1.3 Solving Exponential Equations

Sept. 5

Express 16 as a power of 2

⇒ this means

 $2^{?} = 16$

. ? = 4

: 16 as a power of 2 is 24

Solve:

$$3^{x} = 3^{17}$$

for two powers with the same base to be equal, the

exponents must be equal.

x = 17

Solve:

$$3^{x} = 9$$

need the bases to be the same. Express 9 as a power of 3.

>> this is still "9" - Just changed the for powers, with the same base, to be equal, their exponents must be equal.

Solve:

$$7^{\times} = 343$$
 < rewrite 343 so the bases are the $7^{\times} = 7^{3}$
 $x = 3$
 Same \Rightarrow 343 = 73

Solve: $9 = 27^{x}$ rewrite

9=32

27 = 33

exponents create a $3^2 = 3^{3x}$ Single power.

2 = 3x

 $x = \frac{2}{3}$

need the bases to be the same. BUT we cannot express 9 as a power of 27 OR 27 as a power of 9. So, what base can we express 9 and 27 as a power of?

We have not changed the question, just the look of the question. Now, simplify the powers.

Your goal is to:

- Have a common base
- Single power on the left and right side of the equal sign
- Solve by setting the exponents equal to each other

bases are now the same.....single powersnow set exponents equal to each other

means that 9 = 27

Solve: a)
$$4^{x+1} = 2^{x-1}$$

get same base
$$(2^2)^{x+1} = 2^{x-1}$$

$$2^{2(x+1)} = 2^{x-1}$$

use Laws ->
$$2^{x+2} = 2^{x-1}$$

to get : $4x + 2 = x - 1$

single
$$2x + 2 = x - 1$$
Single
$$2x - x = -1 - 2$$

$$3x \neq 1/3$$

b)
$$5^{2n+1} = \frac{1}{125}$$

$$5^{2n+1} = \frac{1}{5^3}$$
 same base but it is $5^{2n+1} = (5^3)^{-1}$ the den

$$5^3$$
 but $5^{2n+1} = (5^3)^{-1}$ the $5^{2n+1} = 5^{-3}$

$$2n + 1 = -3$$

$$2n = -3 - 1$$

$$5^{2n+1}=5^{-3}$$
 bring up to
 $2n+1=-3$ numerator by
 $2n=-3-1$ changing the
 $2n=-4$ sign of the

$$\left(\frac{1}{5^3}\right)_1 = \left(\frac{5}{7}\right)^{-1}$$
flip chares

c)
$$4^{3x+1} = 32^{x}$$

 $(2^{2})^{3x+1} = (2^{5})^{x}$
 $2^{2(3x+1)} = 2^{5x}$
 $2^{6x+2} = 2^{5x}$

$$2^{6x+2} = 2^{5x}$$
∴ $6x + 2 = 5x$

$$x = -2$$

c)
$$4^{3x+1} = 32^x$$
 = find a common
 $(2^2)^{3x+1} = (2^5)^x$ base for $4 = 32$
 $2^{2(3x+1)} = 2^{5x}$ $2^2 = 4$ $2^5 = 32$

base are the same, single powers is exponents are equal.

Solve:
$$5(2^{x}) = 80$$

$$2^{x} = 16$$

 $2^{x} = 2^{4}$
 $x = 4$

Remember....we want single powers on both sides of equal sign. Problem is on the left side.... two powers.... 5 and 2^x. Can we eliminate one of these powers???? Yes. Divide both sides by 5 (dividing by 2^x will create two powers on the right side)

Solve:
$$65 = 2^{x+5} + 1$$

 $64 = 2^{x+5}$
 $2^6 = 2^{x+5}$
 $6 = x+5$
 $6 = x+5$
 $6 = x+5$

Need single powers.....move 1 to the other side. Need same base

A little more challenging now!!!

Solve: $4^{x^2-x} = 4$

Need single powers. The problem is on the right side. There is nothing that we can divide through by to create **single powers**.

When there is multiplication, try to find a common base for *all* powers.

On the right side, bases are the same with multiplication. Therefore you can use your exponent law...add exponents.

 $(2^{2})^{x^{2}-x} = 2^{2+x^{2}-x}$ $2^{2x^{2}-2x} = 2^{x^{2}-x+2}$ $2x^{2}-2x = x^{2}-x+2$

now set exponents equal to each other

a quadratic equation.....remember how to solve a quadratic equation??????????

get zero on the right side, factor the left side if possible. (or use the quadratic formula)

(x-2)(x+1)=0

 $x^2 - x - 2 = 0$

$$x - 2 = 0$$
 or $x + 1 = 0$
 $x = 2$ $x = -1$

Homework worksheet 1.3 # 1-20 Challenge 22, 23

 $\frac{4^{x^{2}-x}}{4^{1}} = \frac{4 \cdot 2^{x^{2}-x}}{4^{1}}$ $\frac{4^{(x^{2}-x)-1}}{4^{1}} = \frac{2^{x^{2}-x}}{4^{2}-x}$ $\frac{2^{x^{2}-2}-2^{x-1}}{2^{x^{2}-2}-2^{x-2}} = \frac{2^{x^{2}-x}}{2^{x^{2}-x}}$ $\frac{2^{x^{2}-2}-2^{x-2}}{2^{x^{2}-2}-2^{x-2}} = \frac{2^{x^{2}-x}}{2^{x^{2}-x}}$ $\frac{2^{x^{2}-x-1}}{2^{x^{2}-2}-2^{x-2}} = \frac{2^{x^{2}-x}}{2^{x^{2}-x}}$

same as above after this.

- everyone should attempt these

- Per 2 Hifted Charter must do these.

11 a)
$$2^{x+2} - 2x = 48$$

 $2^{x}2^{2} - 2x = 48$
 $2^{x}(2^{2} - 1) = 48$
 $2^{x}(3) = 48$
 $2^{x} = 16$
 $2^{x} = 2^{4}$
 $x = 4$